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Abstract
After a penetrating analysis of the known number–phase commutative relations
we find that the common eigenvector |η〉 of two particles’ relative coordinate
and total momentum also embodies the entanglement with respect to the
correlative amplitude–operational phase. Based on the fact that the number-
difference operator is the canonical conjugate to the Noh–Fougères–Mandel
operational phase operator, the corresponding entanglement is also briefly
discussed.

PACS numbers: 03.65.Ud, 03.67.−a

In 1935, Einstein, Podolsky and Rosen (EPR) [1] published a paper arguing the incompleteness
of quantum mechanics, in this paper they presented the conception of entanglement. They
noticed the fact that two particles, although not interacting, are still entangled since their
quantum state does not factor into a product of the states of each particle. Now the
entangled states have been widely applied to quantum computation, quantum teleportation,
quantum cryptography and quantum superdense coding [2–5]. In an entangled quantum state,
measurement performed on one part of the system provides information on the remaining part.
By observing the commutator [X1 − X2, P1 + P2] = 0, EPR introduced the wavefunction of
a pair of particles with relative coordinate x0:

ψ(x1, x2) = 1

2π

∫ ∞

−∞
dp eip(x1−x2+x0)

which describes a sharply correlated two-particle system. This ψ(x1, x2), when projected
on the momentum wavefunction up(x1) = eipx1/

√
2π of particle 1, yields ψp(x2) =

eip(−x2+x0)/
√

2π , because

ψ(x1, x2) =
∫ ∞

−∞
dp up(x1)ψp(x2).
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On the other hand, projecting ψ(x1, x2) on the coordinate eigenfunction vx(x1) = δ(x − x1)

of particle 1, yields collapse to ψx(x2) = δ(x − x2 + x0), as

ψ(x1, x2) =
∫ ∞

−∞
dxψx(x2)vx(x1).

Thus there is a mysterious nonlocal entanglement between the separated quantum objects.
The EPR argument has stimulated many discussions on the nonlocality and entanglememt
inherent in quantum mechanics. In [6] we have constructed the common eigenvectors |η〉 of
the two particles’ relative position operators X1 − X2 and their total momentum P1 + P2 in
two-mode Fock space, that is

|η〉 = exp

[
−1

2
|η|2 + ηa†1 − η∗a†2 + a†1a

†
2

]
|00〉 (1)

where η = 1√
2
(η1 + iη2) = |η|eiϕ is a complex number, |00〉 is the two-mode vacuum state,

(ai, a
†
i ), i = 1, 2, are the two-mode Bose annihilation and creation operators in the Fock space,

[ai, a
†
j ] = δi,j . The |η〉 state satisfies the completeness relation∫

d2η

π
|η〉 〈η| = 1 d2η ≡ 1

2
dη1dη2 (2)

and possesses the orthonormal property

〈η′|η〉 = πδ(η − η′)δ(η∗ − η′∗).

|η〉 also obeys the eigenvector equations

(a1 − a†2)|η〉 = η|η〉 (a2 − a†1)|η〉 = −η∗|η〉. (3)

It then follows from Xi = 1√
2
(ai + a†i ), Pi = 1

i
√

2
(ai − a†i ) that

(X1 − X2)|η〉 = η1|η〉 (P1 + P2)|η〉 = η2|η〉. (4)

From equation (4) we note a very important fact: although [X1, P1] = [X2, P2] = i,
the commutator [X1 − X2, P1 + P2] = 0 indicates the existence of coordinate–momentum
entanglement between the two particles. According to the standard Schmidt decomposition
theory (see [7]) for any pure state |�〉AB of a bipartite system, there are orthonormal bases
{|i〉A} for particle A and {|i ′〉B} for particle B such that

|�〉AB =
∑
i

√
pi |i〉A|i ′〉B (5)

if the number of nonvanishing eigenvalues (p′
i ) is greater than one, |�〉AB is said to be

entangled. Equation (5) is called the Schmidt decomposition of |�〉AB . The basic ingredient
of the |η〉 state regarding the coordinate–momentum entanglement is demonstrated through
its Schmidt decomposition process, i.e.

|η〉 = e−iη1η2/2
∫ ∞

−∞
dx|x〉1 ⊗ |x − η1〉2eixη2 (6)

where |x〉i is the coordinate eigenstate of Xi; or

|η〉 = eiη1η2/2
∫ ∞

−∞
dp|p〉1 ⊗ |−p + η2〉2e−ipη1 (7)

where |p〉i is the momentum eigenstate of Pi. Equation (6) ((7)) implies that once particle
1 is measured in its coordinate eigenvector |x〉1(momentum eigenvector |p〉1), particle 2, no
matter how far it is from particle 1, will simultaneously collapse into its coordinate eigenvector
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|x − η1〉2 (momentum eigenvector |−p + η2〉2). This decomposition can also be realized by
noting

eiP1X2 |η〉 = e−iη1η2/2
∫ ∞

−∞
dx eiP1(x1−η1)|x〉1 ⊗ |x − η1〉2eixη2

=
√

2πeiη1η2/2|x = η1〉1 ⊗ |p = η2〉2 (8)

thus

|η〉 = e−iP1X2
√

2πeiη1η2/2|x = η1〉1 ⊗ |p = η2〉2 (9)

and we have the need to name e−iP1X2 , which is a unitary operator, the entangling operator,
and name |η〉 the EPR-pair eigenstate.

Another way of looking at the entanglement involved in the |η〉 state is as follows. By
introducing the two-variable Hermite polynomial [8]

Hm,n(η, η
∗) =

min(m,n)∑
l=0

m!n!

l!(m− l)!(n− l)! (−1)lηm−lη∗(n−l) (10)

and its generating function

exp[−tt ′ + ηt + η∗t ′] =
∞∑

m,n=0

tmt ′n

m!n!
Hm,n(η, η

∗) (11)

|η〉 can then be expanded in two-mode Fock space as (another form of the Schmidt
decomposition)

|η〉 =
∞∑

m,n=0

e− 1
2 |η|2 1√

m!n!
Hm,n(η, η

∗)|m〉s |n〉i . (12)

In this study, we explore if there exists any entanglement with respect to the phase and
amplitude in the EPR-pair eigenstate |η〉.

Before addressing this question, let us see if one can use an ‘entangling’ operator
exp

(
iN1êiθ2

)
, where N1 = a

†
1a1 and êiθ2 is the single-mode Susskind–Glogower (SG) phase

operator [9]

êiθi = 1√
Ni + 1

ai =
∞∑
n=0

|n〉ii〈n + 1| i = 1, 2 (13)

to operate on |eiθ 〉1 ⊗ |n〉2, as

exp
(
iN1êiθ2

)|eiθ 〉1 ⊗ |n〉2 (14)

to make up a number–phase entangled state? The answer is negative, because although the
single-mode phase eigenstate is well defined [10]

|eiθ 〉1 = exp
[
eiθa

†
1

√
N1 + 1

]|0〉1 =
∞∑
n=0

eiθn

n!

(
a
†
1

√
N1 + 1

)n|0〉 1 =
∞∑
n=0

eiθn|n〉1 (15)

and

N1|eiθ 〉1 =
∞∑
n=0

neiθn|n〉1 = −i
∂

∂θ
|eiθ 〉1 (16)

but êiθ2 |n〉2 = (1 − δn,0)|n− 1〉2 implies that êiθ2 is not a unitary operator [10], so exp
(
iN1êiθ2

)
is not unitary either, it cannot qualify as a number–phase entangling operator.
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In a similar way to [X1 −X2, P1 + P2] = 0, one might consider[
êiθ1 ê−iθ2 , N1 + N2

] = 0 (17)

as the starting point to construct a number–phase entangled state, here êiθ1 ê−iθ2 is the two-
mode phase difference operator (each measurement of phase is actually measuring a phase
difference between an objective light and a reference light) and exhibits its lowering and
ascending behaviour on the state

|j,m〉 = 1√
(j +m)!(j −m)! |n1 = j +m,n2 = j −m〉 (18)

as

êiθ1 ê−iθ2 |j,m〉 = (1 − δm,−j )|j,m− 1〉 ê−iθ1 êiθ2 |j,m〉 = (1 − δm,j )|j,m + 1〉. (19)

However, êiθ1 ê−iθ2 is neither Hermitian nor unitary, we have to abandon considering the SG
phase operator as our starting point for discussing the topic of number–phase entanglement.

Now we address if there exists any entanglement with respect to the phase and amplitude
in the EPR-pair eigenstate |η〉. We still focus on the commutator [X1 − X2, P1 + P2] = 0,
however, instead of considering the usual classical phase space composed of (xi, pi), we
construct a phase space of (x1 − x2) and (p1 + p2), which means that we take (x1 − x2) and (p1

+ p2) as the transversal and longitudinal axes, respectively, and (x1 − x2) = 0, (p1 + p2) = 0
as the origin in the space. Then the square of the radius (x1 − x2)

2 + (p1 + p2)
2 corresponds

to the operator (X1 − X2)
2 + (P1 + P2)

2, and we can map the cosine of the rotating angle
cosϕ = (x1 − x2)/

√
(x1 − x2)2 + (p1 + p2)2 in the space to an operator cos 

cos = X1 − X2√
(X1 − X2)2 + (P1 + P2)2

. (20)

Using the relationsXi = 1√
2
(ai + a†i ), Pi = 1

i
√

2
(ai − a†i ), cos can be explicitly expressed as

cos = a1 + a†1 − a2 − a†2
2
√
(a1 − a†2)(a†1 − a2)

= 1

2
(ei + e−i ) (21)

where ei is

ei ≡
√√√√a1 − a†2
a
†
1 − a2

. (22)

Note [a1 − a†2, a†1 − a2] = 0, so they can reside in the same square root. Remarkably, since the
common eigenvector of a1 − a†2 and a†1 − a2 is just |η〉, |η〉 is also the eigenstate of ei with an
eigenvalue being a phase

ei |η〉 =
(
η

η∗

) 1
2

|η〉 = eiϕ |η〉 (23)

which tells us that in the |η〉 representation ei behaves as a phase operator. It is a happy
coincidence that ei is just the operational phase operator proposed by Noh et al [11] and
Freyberger et al [12] in their operational quantum phase measurement scheme with an eight-
port homodyne detector. In [13] Hradil also suggested this phase operator. It is in [14, 15] that
the explicit eigenstate |η〉 of ei was introduced. However, in [14, 15] the amplitude–phase
entanglement involved in |η〉 was not touched upon. Using the completeness relation of |η〉
we have

ei = d2η

π
eiϕ |η〉〈η|. (24)
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Similar to a1 = √
N1 + 1eiθ1 in (13), we can make the polar decomposition

a1 − a†2 =
√
A†Aei a

†
1 − a2 = e−i 

√
A†A

we name A†A the correlative amplitude operator

A†A = (a†1 − a2)(a1 − a†2) = (X1 − X2)
2 + (P1 + P2)

2 (25)

and have [ei ,A†A] = 0. From equation (3) we see

A†A|η〉 = |η|2|η〉 (26)

so |η〉 is also the common eigenvector of A†A and ei , in this sense we say that |η〉 also shows
the entanglement in respect of the correlation-amplitude operational phase, a novel fact which
has been unnoticed for a long time. Hence we can also name |η〉 the operational-phase state.

Since ei is unitary, from (21) we derive the angle operator

 = 1

2i
[ln(a1 − a†2)− ln(a†1 − a2)] =

∫
d2η

π
ϕ|η〉 〈η|. (27)

In sharp contrast to the case of the usual (xi, pi) phase space, where the rectangular uncertainty
relation!Xi!Pi (a small square ≈ h̄) can be converted to the radius–angle uncertainty relation
Ri!θi!Ri (a ring area in a small sector), which means that the radius Ri (corresponding to√
x2
i + p2

i ) and the rotating angle θ i cannot be precisely measured at the same time, we see
that corresponding to the ‘radius’ and rotating ‘angle’ in the phase space of (x1 − x2) and
(p1 + p2), the correlative amplitude operator commutes with  ,

[A†A, ] = 0 (28)

which explains why |η〉 involves the operational phase–correlative amplitude entanglement.
To complete the theory of this type of entanglement of |η〉, we note that, similar to the

SG operator
[
N1, eiθ

] = −eiθ , the two-mode number-difference operator D = a
†
1a1 − a†2a2

is the canonical conjugate to the angle operator  , [D, ei ] = −ei . Moreover, while  
corresponds to ϕ in the |η〉 representation, D behaves as

D|η〉 = [a†1(η + a†2)− a†2(−η∗ + a†1)]|η〉 = |η|(eiϕa
†
1 + e−iϕa

†
2

)
× exp

[
−1

2
|η|2 + |η|(eiϕa

†
1 − e−iϕa

†
2

)
+ a†1a

†
2

]
|00〉 = −i

∂

∂ϕ
|η〉 (29)

so we must examine if any entanglement related to D exists. When we compare (29) with (16)
and make reference to (15)

N1|eiθ 〉1 = −i
∂

∂θ
|eiθ 〉1 |eiθ 〉1 =

∞∑
n=0

eiθn|n〉1

we immediately realize that the operational-phase state |η = |η|eiϕ〉 can be expanded in its
‘number-difference’ basis:

|η = |η|eiϕ〉 =
∞∑

q=−∞
eiϕq |q, |η|〉 (30)

where the ‘number-difference’ basis |q, |η|〉 satisfies

D|q, |η|〉 = q|q, |η|〉. (31)

From (30) it is easily seen that

|q, |η|〉 = 1

2π

∫ 2π

0
dϕ e−iϕq |η = |η|eiϕ〉. (32)
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An entanglement involved in |q, |η|〉 may be analysed as follows. Note although

[D, (a1 − a†2)] = −(a1 − a†2) [D, a†1 − a2] = a†1 − a2 (33)

we do have

[D, (a1 − a†2)(a†1 − a2)] = [D,A†A] = 0 (34)

so |q, |η|〉 is the common eigenvector of A†A and D:

A†A|q, |η|〉 = |η|2|q, |η|〉. (35)

Together (31) and (35) show the entanglement between the number-difference and correlative
amplitude. From (33) we see that (a1 − a†2) and (a†1 − a2) are the lowering and ascending
operators on the ‘number-difference’ basis:

(a1 − a†2)|q, |η|〉 = |η||q − 1, |η|〉 (a
†
1 − a2)|q, |η|〉 = |η||q + 1, |η|〉 (36)

and

ei |q, |η|〉 = |q − 1, |η|〉 e−i |q, |η|〉 = |q + 1, |η|〉.
The above discussion can be extended to the state |ξ〉

|ξ〉 = exp

[
−1

2
|ξ |2 + ξa† + ξ∗b† − a†b†

]
|00〉 (37)

which is the common eigenvector of X1 + X2 and P1 − P2,: one can similarly analyse the
entanglement between

(a1 + a†2)(a
†
1 + a2) and

√√√√a1 + a†2
a
†
1 + a2

D and (a1 + a†2)(a
†
1 + a2)

without any difficulty.
In summary, we have plunged into the thick of the entanglement involved in the EPR-

pair eigenstate. We have revealed that a new type of entanglement, correlative amplitude–
operational phase entanglement, is inherent in the state |η〉, while [D,A†A] = 0 implies
the number-difference–correlative amplitude entanglement. These are the new concepts of
entanglement to which we should pay attention.
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